Kinetics and Mechanisms of Oxidation of Reversible Organic Systems with Cobalt(iii) in Acidic Perchlorate Media

By Ezio Pelizzetti * and Edoardo Mentasti, Istituto di Chimica Analitica, Università di Torino, Via P. Giuria, 5-10125 Torino, Italy

Abstract

The oxidation kinetics of some quinols with cobalt(III) perchlorate have been investigated at different temperatures and acidities by means of a stopped-flow technique. The rate law is of the form $-\frac{1}{2} \mathrm{~d}\left[\mathrm{Co}^{\mathrm{III}}\right] / \mathrm{d} t=\left(K_{\mathrm{a}}+k_{\mathrm{b}} K_{\mathrm{b}}\left[\mathrm{H}^{+}\right]^{-1}\right)$ [$\left.\mathrm{Co}^{\mathrm{III}}\right]$ [Quinol]: the term k_{a} refers to $\mathrm{Co}^{3+}(\mathrm{aq})$ and k_{b} to $[\mathrm{Co}(\mathrm{OH})]^{2+}(\mathrm{aq})$ species. For $\mathrm{Co}^{3+}(\mathrm{aq})$, comparison has been made with other systems in the light of the Marcus theory: a large number of reaction rates agree with an experimental correlation of the form $k=\alpha Z \exp \left(-\Delta G^{*} / R T\right)$, where $\alpha=10^{-5}-10^{-6}$ and $\Delta G^{*}=\lambda\left[1+\left(\Delta G^{\ominus} / \lambda\right)^{2}\right] / 4$, according to Marcus theory. However, the small range of values of the second-order rate constants for $[\mathrm{Co}(\mathrm{OH})]^{2+}-$ (aq) suggests a limiting behaviour for this species.

Relations between the rate constants and the corresponding free energies of redox reactions have provided insight into the mechanisms involved. ${ }^{1}$ Only a limited set of data is available on the behaviour of redoxreversible organic systems reacting with metal-ion complexes. ${ }^{2}$ In previous papers from this laboratory, such correlations between thermodynamic and kinetic properties have been discussed for the oxidation of catechols by $\mathrm{Mn}^{\mathrm{HI}, 3} \mathrm{Co}^{\mathrm{III}, 4}$ and hexachloroiridate(IV), ${ }^{5}$ and of quinols by $\mathrm{Tl}^{\mathrm{III} 6}$ and $\left[\mathrm{IrCl}_{6}\right]^{2-.}$.

The present paper deals with the behaviour of $\mathrm{Co}^{\mathrm{III}}$ in aqueous acidic perchlorate media and its significance in the general picture of relations between reactivities and free energies. Oxidation reactions of $\mathrm{Co}^{\mathrm{III}}$ in this medium give experimental rates which are up to five orders of magnitude lower than those predicted by the Marcus theory, which is one of the more successful theoretical models. ${ }^{1,8}$ The application of this model to cobalt(III) reactions must be viewed with some reservations since many of these reactions are either inner sphere or may be catalysed by $\mathrm{Co}^{\mathrm{II}}$, in that Co^{2+} is always present.

EXPERIMENTAL

Reagents and Procedure.-The investigated quinols ($\mathrm{H}_{2} \mathrm{~L}$), 2,3,5-trimethylbenzene-1,4-diol, 2,5-dihydroxybenzoic acid (gentisic acid), 2,5-dihydroxybenzene-1,4-disul-
${ }^{1}$ R. A. Marcus, Ann. Rev. Phys. Chem., 1964, 15, 155; N. Sutin, ibid., 1966, 17, 119 and Chem. in Britain, 1972, 8, 148; J. E. Earley, Progr. Inorg. Chem., 1970, 13, 243; A. G. Sykes, Adv. Inorg. Chem. Radiochem., 1967, 10, 153; W. L. Reynolds and R. W. Lumry, 'Mechanisms of Electron Transfer,' Ronald Press, New York, 1966.
${ }^{2}$ R. A. Marcus, J. Chem. Phys., 1957, 26, 872 ; S. A. Levison and R. A. Marcus, J. Phys. Chem., 1968, 72, 358; K. Reinschmiedt, J. C. Sullivan, and M. Woods, Inorg. Chem., 1973, 12, 1639.
${ }^{3}$ E. Pelizzetti, E. Mentasti, and G. Giraudi, Inorg. Chim. Acta, 1975, 15, L1.
phonic acid, and 2,3-dicyanobenzene-1,4-diol, were supplied by $\mathrm{K} \& \mathrm{~K}$. The other reagents and procedure were as previously described. ${ }^{4,9}$

RESULTS

The reaction rates were first order with respect to the concentrations of reagents. The second-order rate constants, k_{0}, at different acidities are collected in Table 1. Increase of acidity caused the overall rate constants to decrease, as observed in the reactions of $\mathrm{Co}^{\mathrm{III}}$ with the other organic substrates hitherto investigated.
The results agree with the following mechanism in equations (1)-(4) where HL° is the semiquinone radical and

$$
\begin{gather*}
\mathrm{Co}^{3+}(\mathrm{aq}) \stackrel{K_{\mathrm{h}}}{\longrightarrow} \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \tag{1}\\
\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~L} \xrightarrow{k_{a}} \mathrm{Co}^{\mathrm{II}}+\mathrm{HL}^{\bullet}+\mathrm{H}^{+}(\mathrm{aq}) \tag{2}\\
{[\mathrm{Co}(\mathrm{OH})]^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~L} \xrightarrow{k_{\mathrm{b}}} \mathrm{Co}^{\mathrm{II}}+\mathrm{HL}^{-}} \tag{3}\\
\mathrm{Co}^{\mathrm{III}}+\mathrm{HL}^{\text {fast }} \xrightarrow{\longrightarrow} \mathrm{Co}^{\mathrm{II}}+\mathrm{L}+\mathrm{H}^{+}(\mathrm{aq}) \tag{4}
\end{gather*}
$$

L the corresponding 1,4 -benzoquinone. Hence, we can write the rate law below, and, from plots of $k_{0}\left(1+K_{\mathrm{h}}\left[\mathrm{H}^{+}\right]^{-1}\right)$ against $\left[\mathrm{H}^{+}\right]^{-1}$, the values of k_{a} and $k_{\mathrm{b}} K_{\mathrm{h}}$ can be evaluated.

$$
-\frac{\mathrm{d}\left[\mathrm{Co}^{\mathrm{III}}\right]}{\mathrm{d} t}=\frac{\left(k_{\mathrm{a}}+k_{\mathrm{b}} K_{\mathrm{h}}\left[\mathrm{H}^{+}\right]^{-1}\right)\left[\mathrm{H}_{2} \mathrm{~L}\right]\left[\mathrm{CoIII}^{\mathrm{II}}\right]}{1+K_{\mathrm{h}}\left[\mathrm{H}^{+}\right]^{-1}}=
$$

${ }^{4}$ E. Pelizzetti, E. Mentasti, and E. Pramauro, J.C.S. Dalton, 1976, 26.
${ }^{5}$ E. Mentasti, E. Pelizzetti, and C. Baiocchi, J.C.S. Dalton, in the press.
${ }_{6}$ E. Pelizzetti and E. Mentasti, J. Inorg. Nuclear Chem., in the press.
${ }^{7}$ E. Pelizzetti, E. Mentasti, and C. Baiocchi, submitted for publication.
${ }_{8}$ R. A. Marcus, J. Phys. Chem., 1968, 72, 891 and refs. therein.
${ }^{9}$ E. Mentasti, E. Pelizzetti, and G. Giraudi, J. Inorg. Nuclear Chem., 1976, 38, 795.

Table 1
Second-order rate constants, $k_{0}\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$, for reactions of $\mathrm{Co}^{\text {III }}$ at different acidities, $25.0^{\circ} \mathrm{C}$, and $I=2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ $\left[\mathrm{HClO}_{4}\right] / \mathrm{mol} \mathrm{dm}^{-3}$

\quad Compound	~ 0.30	0.50	1.00	2.00
2,3,5-Trimethylbenzene-1,4-diol	1.5×10^{4}	$1.1_{5} \times 10^{4}$	8.0×10^{3}	7.0×10^{3}
2,5-Dihydroxybenzoic acid	1.4×10^{3}	9.0×10^{2}	5.0×10^{2}	3.6×10^{2}
2,5-Dihydroxybenzene-1,4-disulphonic acid	4.0×10^{3}	2.5×10^{3}	1.35×10^{3}	8.0×10^{2}
2,3-Dicyanobenzene-1,4-diol	1.1×10^{3}	6.5×10^{2}	4.0×10^{2}	1.5×10^{2}

* The error of the rate constants is within $\pm 5 \%$.

Table 2
Kinetic parameters for oxidation reactions of $\mathrm{Co}^{\mathrm{III}}$ in aqueous acidic perchlorate media at $25^{\circ} \mathrm{C}$ and $I=2.0 \mathrm{~mol} \mathrm{dm}^{-3}$

${ }^{a}$ See footnote on p. 2224. ${ }^{b}$ For compounds (1)-(15) this potential refers to the couples $\mathrm{HL}^{\circ}-\mathrm{H}_{2} \mathrm{~L}$, calculated as in the text; for the Co ${ }^{111}$ Co ${ }^{I I}$ couple a value of 1.87 V has been adopted. ${ }^{11}{ }^{c}$ The values of ΔH^{\ddagger} and ΔS^{\ddagger} were evaluated from other kinetic runs at $7.0^{\circ} \mathrm{C}$. Errors in ΔH^{\ddagger} are $\pm 1.5-2.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ and in ΔS^{\ddagger} are $\pm 5-7 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. ${ }^{d}$ This work. e The following selfexchange rate constants $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$ were used: $\left[\mathrm{Fe}(\mathrm{phen})_{3}\right]^{3+}-\left[\mathrm{Fe}(\mathrm{phen})_{3}\right]^{2+}, \mathrm{ca} .5 \times 10^{8} ; 19,21\left[\mathrm{Co}(\text { terpy })_{2}\right]^{3+} \ldots\left[\mathrm{Co}(\text { terpy })_{2}\right]^{2+}($ terpy $=2,2^{\prime}: 6^{\prime}: 2^{\prime \prime}$-terpyridyl), 48 (see footnote h); $\mathrm{Fe}^{3+} \mathrm{Fe}^{2+}, 4.2$ (J. Silverman and R. W. Dodson, J. Phys. Chem., 1952, 56, 846); $\mathrm{V}^{3+}-\mathrm{V}^{2+}, 1.0 \times 10^{-2}\left(\mathrm{~K} . \mathrm{V}\right.$. Krishnamurty and A. C. Wahl, J. Amer. Chem. Soc., 1958, 80, 5921); $\mathrm{Cr}^{3+-} \mathrm{Cr}^{2+}$, ca. $2 \times 10^{-5}(\mathrm{~A}$. Anderson and N. A. Bonner, J. Amer. Chem. Soc., 1954, ry, 3826) ; $\mathrm{Tl}^{3+} \mathrm{Tl}^{2+}$, ca. 10^{5} (D. R. Stranks and J. K. Yandell, J. Phys. Chem., $1969,73,840$); $\mathrm{Tl}^{2+}-\mathrm{Tl}^{+}$, ca. 5×10^{4} (see previous ref.). $\quad f I=3.0 \mathrm{~mol} \mathrm{dm}^{-3}$. ${ }^{g} I=1.0 \mathrm{~mol} \mathrm{dm}^{-3} .{ }^{h} \mathrm{R}$. Farina and R. G. Wilkins,
 W. C. E. Higginson, J. Chem. Soc., 1956, 343.

The data are collected in Table 2, together with the activation parameters. The values of $K_{\mathrm{h}}=2 \times 10^{-3} \mathrm{~mol}$ dm^{-3}, with the associated $\Delta H_{\mathrm{h}}=10 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S_{\mathrm{h}}=$ $22 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, * have been adopted. ${ }^{10,11}$

DISCUSSION

Data concerning the investigated quinols, together with related reactions of $\mathrm{Co}^{\text {III }}$ in aqueous perchlorate media, are collected in Table 2 . The values of k_{a} exceed the rate of water substitution in the co-ordination sphere of $\mathrm{Co}^{3+}(\mathrm{aq}),{ }^{11,12}$ thus suggesting an outer-sphere mechanism. When this reaction mechanism is operat-

[^0]ing, it can be expected that the reaction rates will be affected by the magnitude of ΔG^{\ominus}, the free energy of reaction. In the present systems, the substituents have no direct effect on the reaction sites but their action is related to the ability of the reactants to donate electrons.

The evaluation of $\Delta G_{12}{ }^{\ominus}$, the free energy of reactions of the rate-determining steps (2) and (3), requires the knowledge of the potentials $E_{2}{ }^{\ominus}$ of the half-reactions $\mathrm{HL}^{\cdot}+$ $\mathrm{H}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~L}$. It has been shown in previous papers, concerning the oxidation of quinols ${ }^{7}$ and catechols ${ }^{5}$ with $\left[\mathrm{IrCl}_{6}\right]^{2-}$, that in both cases a reasonable estimate of $E_{2}{ }^{\ominus}$ can be made by adding a constant
${ }^{11}$ G. Davies and B. Warnqvist, Co-ordination Chem. Rev., 1970, 5, 349.
${ }_{12}$ G. Davies and K. O. Watkins, J. Phys. Chem., 1970, 74, 3388.
quantity (0.38 V) to the corresponding potential of the two-electron reactions $\mathrm{L}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~L}$. Values of $\Delta G_{12}{ }^{\ominus}$ calculated in this way (that is by assuming $\mathrm{HL}{ }^{\circ}$ as the product of the first step of reaction) for the compounds investigated, together with those for other systems, are also in Table 2.

For quinols, a plot of $\Delta G_{12} *$ [obtained from the values of k_{a}, see equation (6)] as a function of $\Delta G_{12}{ }^{\ominus}$ is satisfactorily linear, according to an empirical equation of the form (5). In equation (6) Z is the collision frequency for bimolecular reactions in solution, assumed to be 10^{11} $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.* From the plot of equation (6), $a=$ $17.5 \pm 2.8 \mathrm{kcal} \mathrm{mol}^{-1}$ and $b=0.35 \pm 0.06$ were obtained. A similar expression was adopted by Rillema

$$
\begin{gather*}
\Delta G_{12}^{*}=a+b \Delta G_{12}^{\ominus} \tag{5}\\
k=Z \exp \left(-\Delta G_{12} * / R T\right) \tag{6}
\end{gather*}
$$

and Endicott, ${ }^{13}$ for oxidation-reduction reactions involving complexes of $\mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Co}^{I I}$ with macrocyclic ligands. Their formulation accounts for the observed asymmetry of the coefficients b in the oxidation of cobalt(II) or in the reduction of cobalt(III) complexes. Moreover the term a was not very sensitive to the activation free energies of the self-exchange reactions of either oxidant or reductant. These workers suggested some rational explanations for accounting for such behaviour.

Another approach to the free-energy correlation is the Marcus cross-relation ${ }^{1,8}$ (7), where λ_{12} is the intrinsic reorganization barrier required to achieve the nuclear configuration of the activated complex, and is related to the free energies of activation observed in the self-

$$
\begin{equation*}
\Delta G_{12}^{*}=w^{\mathrm{r}}+\frac{\lambda_{12}}{4}+\frac{\Delta G_{12} \ominus^{\prime}}{2}+\frac{\left(\Delta G_{12} \ominus^{\prime}\right)^{2}}{4 \lambda_{12}} \tag{7}
\end{equation*}
$$

exchange reactions of the interacting species, i.e. $\lambda_{12}=$ $2\left(\Delta G_{11}{ }^{*}-w_{11}+\Delta G_{22}{ }^{*}-w_{22}\right)$, where w_{11} and w_{22} represent the work terms involved in the self-exchange reactions; $\Delta G_{12}{ }^{\prime}=\Delta G_{12}{ }^{\ominus}+w^{\mathrm{p}}-w^{\mathrm{r}}$, where w^{p} and w^{r} are the work terms required to bring the products or reactants together at the separation distance in the activated complex.

Equation (7), which has found wide applicability to redox reactions between metal-ion complexes, ${ }^{1}$ failed in the interpretation of some cobalt(iII) reactions, as reported above. In particular, by oxidizing members of an homogeneous series with $\mathrm{Co}^{\mathrm{III}},{ }^{14}$ it was found that, on plotting $\Delta G_{12}{ }^{*}$ against $\Delta G_{12}{ }^{\ominus}$, the gradient obtained was in agreement with expectation but the intercept

[^1]was different from that predicted (i.e. observed rate constants were lower by a factor of $10^{5}-10^{6}$ compared with the calculated values). Several arguments have been suggested to account for this discrepancy, e.g. multiplicity change and non-adiabaticity, and the formation of radical intermediate species. ${ }^{1,15}$

Recently, reactions of $\mathrm{Co}^{3+}(\mathrm{aq})$ with $\mathrm{Cr}^{\mathrm{II}, 16} \mathrm{~V}^{\mathrm{II},{ }^{16}}$ and $\mathrm{TIII}^{1 \mathrm{I}},{ }^{17}$ involving large variations in $\Delta G_{12}{ }^{\ominus}$, were investigated. With these ions the observed rate constants were not as large as would be expected and the limiting condition predicted by equation (7) was invoked. The data collected in plots by Hyde et al. ${ }^{\mathbf{1 6}}$ and by Falcinella et al. ${ }^{17}$ showed that the intrinsic parameters play an important role compared with the thermodynamic parameters (i.e. comparison of systems with large differences in ΔG^{\ominus} shows similar kinetic parameters).

The difficulty in the application of the Marcus theory arises mainly from the lack of knowledge of the intrinsic parameters $\left(\Delta G_{11}{ }^{*}, \Delta G_{22}{ }^{*}\right.$; the work terms, owing to the high ionic strength at which the reported investigations were made, probably play a minor role), so that a comparison between different reacting pairs can often give only qualitative conclusions. In the present systems the reactants (quinols and catechols) are chemically similar so that the reacting part of the molecule remains effectively the same throughout the series and thus the term $\Delta G_{22} *$ can be assumed constant. A recent determination by Meisel and Fessenden ${ }^{18}$ of the rates of exchange between semiquinone radical ions and their parent quinones showed that the rate constants fall in the range $0.5 \times 10^{8}-2 \times 10^{8} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, on going from the parent benzoquinone to duroquinone. Thus, by extending the similarity to $\mathrm{HL}--\mathrm{H}_{2} \mathrm{~L}$ systems, the assumption of the constancy of $\Delta G_{22} *$ seems to be confirmed within ca. $1 \mathrm{kcal} \mathrm{mol}^{-1}$ [which corresponds to a maximum variation of $c a .0 .3 \mathrm{kcal} \mathrm{mol}^{-1}$ in the term on the right-hand side of equation (7)]. The intrinsic parameter for the $\mathrm{HL} \cdot-\mathrm{H}_{2} \mathrm{~L}$ couple was calculated from the previously investigated reactions of $\mathrm{Mn}^{\mathrm{III}}$ with catechols, ${ }^{3}$ for which a Marcus trend was observed. [Owing to the similarity in the intrinsic parameters observed for quinols ${ }^{7}$ and catechols ${ }^{5}$ in their oxidation by $\mathrm{Ir}^{\text {IV }}$ and with tris(1,10-phenanthroline)iron(III), ${ }^{19}$ the same value was adopted for all the organic substrates.] From the estimated ΔG^{*} for $\mathrm{Mn}^{\mathrm{III}}-\mathrm{Mn}^{\mathrm{II}}$ exchange (ca. 20 kcal $\left.\mathrm{mol}^{-1}\right)^{20}$ a value of $\Delta G_{22}{ }^{*}=6.5 \mathrm{kcal} \mathrm{mol}^{-1}$ can be adopted for $\mathrm{HL}-\mathrm{H}_{2} \mathrm{~L}$ exchange (corresponding to a rate constant of $c a .2 \times 10^{6} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for the reaction between the radical and the parent molecule). This

[^2]value of $\Delta G_{22} *$ may be an overestimate ($\mathbf{1}-2 \mathrm{kcal}$ mol^{-1}), since the data for $\mathrm{Mn}^{\mathrm{IIL}}-\mathrm{Mn}^{\mathrm{II}}$ exchange were derived by assuming a low value for the $\left[\mathrm{Fe}(\mathrm{phen})_{3}\right]^{3+}$ $\left[\mathrm{Fe}(\mathrm{phen})_{3}{ }^{2+}\right.$ exchange rate and neglecting the work terms. This fact could slightly affect the intercepts rather than the gradient of Figures 1 and 2. (For a

Figure 1 Plot of $\left(\Delta G_{12} *-\frac{\lambda_{12}}{4}-\frac{\left(\Delta G_{12}\right)^{2}}{4 \lambda_{12}}\right)$ as a function of $\Delta G_{12}{ }^{\ominus}$, at $25^{\circ} \mathrm{C}$, for the $\mathrm{Co}^{3+}(\mathrm{aq})$ oxidation of reductants (1)(19) of Table 2: () quinols; (\bigcirc) catechols; and (\triangle) tris (1,10phenanthroline)iron(II) complexes

Figure 2 Plot of $\left(\Delta G_{12}{ }^{*}-\frac{\lambda_{12}}{4}-\frac{\left(\Delta G_{12}{ }^{\ominus}\right)^{2}}{4 \lambda_{12}}\right)$ as a function of $\Delta G_{12}{ }^{\ominus}$, at $25{ }^{\circ} \mathrm{C}$, for the $\mathrm{Co}^{3+}(\mathrm{aq})$ oxidation of the reductants of Table 2. In the broken square are reported the points in Figure 1. The straight line was calculated excluding points (21), (25), and (26)
decrease of $2 \mathrm{kcal} \mathrm{mol}^{-1}$ in $\Delta G_{22}{ }^{*}$, an increase of 0.8 kcal mol^{-1} in the ordinates should be observed.)

[^3]In Figure 1, a plot of $\Delta G_{12}{ }^{*}-\left(\lambda_{12} / 4\right)-\left(\Delta G_{12}\right)^{2} /$ $4 \lambda_{12}$ is given as a function of $\Delta G_{12}{ }^{\ominus}\left(\Delta G^{*}\right.$ for $\mathrm{Co}^{\mathrm{III}}-\mathrm{Co}^{\mathrm{II}}$ was assumed to be $13.8 \mathrm{kcal} \mathrm{mol}{ }^{-1}$). ${ }^{11}$ This plot also collects data for reactions of $\mathrm{Co}^{\mathrm{III}}$ with $\left[\mathrm{Fe}(\text { phen })_{3}\right]^{2+} .^{\mathbf{1 4}}$ (A value of $\Delta G^{*}=3 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, i.e. $k_{\text {ex. }}, c a .5 \times 10^{8} \mathrm{dm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$, was adopted for the last complexes. $)^{19,21}$ The data lie rather well on a straight line of gradient $0.52 \pm$ 0.05 and intercept $8.2 \pm 1.1 \mathrm{kcal} \mathrm{mol}^{-1}$. This suggested an extension of the treatment to data concerning cobalt(III) perchlorate oxidation of other substrates, particularly some aquametal ions (see Figure 2). The points with a large scatter concerned $\mathrm{Mn}^{2+}(\mathrm{aq}){ }^{22}$ and, to a lesser degree, TI. (In the latter case the disagreement should be due, in part, to the uncertainty about the values of $\mathrm{Tl}^{\mathrm{III}}-\mathrm{Tl}^{\mathrm{II}}$ and $\mathrm{Tl}^{\mathrm{II}-\mathrm{Tl}^{\mathrm{I}} \text { self-exchange rates.) }}$ The gradient and intercept of the straight line are within the uncertainty reported above for the plot in Figure 1.

According to equation (7), the intercept should be zero (that is, the point corresponding to $\mathrm{Co}^{\mathrm{III}}-\mathrm{CoII}$ self-exchange) which is not the case in the above plots. The difference found can be empirically taken into account by the inclusion of an additional factor in equation (6), as in (8). The factor α should probably reflect

$$
\begin{equation*}
k=\alpha Z \exp \left(-\Delta G_{12}^{*} / R T\right) \tag{8}
\end{equation*}
$$

the breakdown of one or more of the assumptions made in deriving equation (7), namely no differences in the precursor or successor complexes, adiabaticity of all the reactions involved, and absence of any rapid preequilibrium change (spin change). ${ }^{23}$ Other factors such as the tunnelling effect or solvent effects could be responsible for these features. The value of α can be calculated to be $10^{-5}-10^{-6}$, suggesting a maximum rate constant for reactions of $\mathrm{Co}^{3+}(\mathrm{aq})$ of $c a .10^{5}-10^{6} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. The present plots show that the oxidation of redoxreversible organic systems by $\mathrm{Co}^{3+}(\mathrm{aq})$ can be pictured according to a modified Marcus relation. ${ }^{24}$
Furthermore, the experimental data of the present investigation give additional evidence of a large aciddependent term, attributed to the higher reactivity of $[\mathrm{Co}(\mathrm{OH})]^{2+}(\mathrm{aq})$ compared to $\mathrm{Co}^{3+}(\mathrm{aq})$ and showing for the former a limiting behaviour, as suggested by Davies. ${ }^{10,25}$ Further work with complexes of $\mathrm{Co}^{\text {III }}$ in which the co-ordinated water molecules are completely, or only in part, substituted by other ligands, and with other organic systems should give additional information on the oxidation behaviour of $\mathrm{Co}^{\mathrm{III}}$.*
[6/368 Received, 23vd February, 1976]
${ }^{21}$ M. W. Dietrich and A. C. Wahl, J. Chem. Phys., 1963, 38, 1591.
${ }_{22}$ G. Davies, Inorg. Chem., 1971, 10, 1155.
${ }^{23}$ R. A. Marcus and N. Sutin, Inorg. Chem., 1975, 14, 213.
24 R. A. Marcus, in 'The Nature of Seawater,' ed. E. G. Goldberg, Dahlem Konferenzen, Berlin, 1975, p. 477.
${ }_{25}$ G. Davies, Co-ordination Chern. Rev., 1974, 14, 287.

[^0]: * $\mathrm{l} \mathrm{cal}=4.184 \mathrm{~J}$.
 ${ }^{10}$ I. Bodek and G. Davies, Co-ordination Chem. Rev., 1974, 14, 269.

[^1]: * The form utilized for evaluating ΔH^{\ddagger} and ΔS^{\ddagger}, reported in Table 2, was $k=(\boldsymbol{k} T / h) \mathrm{e}^{-\Delta \Delta^{\sharp \ddagger / R T}} \mathrm{e}^{\Delta S_{\ddagger} \ddagger / R}$. The relations between $\Delta G^{*}, \Delta H^{*}$, and ΔS^{*}, and the quantities $\Delta G^{\ddagger}, \Delta H^{\ddagger}$, and ΔS^{\ddagger} are $\Delta G^{\ddagger}=\Delta G^{*}-R T \ln (\boldsymbol{h} Z / \boldsymbol{k} T), \Delta S^{\ddagger}=\Delta S^{*}+R \ln (\boldsymbol{h} Z / \boldsymbol{k} T)-$ $\frac{1}{2} R$, and $\Delta H^{*}=\Delta H^{*}-\frac{1}{2} R T$. Here $\boldsymbol{k}, \boldsymbol{h}, R$, and T are the Boltzmann constant, Plank constant, the universal gas constant, and the absolute temperature, respectively.
 ${ }^{13}$ D. P. Rillema and J. F. Endicott, J. Amer. Chem. Soc., 1972, 94, 8711 and their related papers.
 ${ }_{14}$ R. J. Campion, N. Purdie, and N. Sutin, Inovg. Chem., 1964, 3, 1091 .

[^2]: 15 T. J. Pryzystas and N. Sutin, J. Amer. Chem. Soc., 1973, 95, 5545.
 ${ }_{16}^{16}$ M. R. Hyde, R. Davies, and A. G. Sykes, J.C.S. Dalton, 1972, 1838.
 ${ }_{17}$ B. Falcinella, P. D. Felgate, and G. S. Laurence, J.C.S. Dalton, 1975, 1.
 ${ }_{18}$ D. Meisel and R. W. Fessenden, personal communication.
 ${ }^{19}$ E. Pelizzetti and E. Mentasti, Int. J. Chem. Kinetics, in the press.
 ${ }_{20}$ P. J. Proll, in 'Comprehensive Chemical Kinetics,' eds. C. H. Bamford and C. F. H. Tipper, Elsevier, Amsterdam, 1972, vol. 7, ch. 2.

[^3]: * The data of a recent study on the kinetics of the Colli_UIII reaction, which involves a large variation in $\Delta G^{\ominus}(-55.7 \mathrm{kcal}$ mol^{-1}), can be included in the present treatment; in fact the related point (calculated using $\Delta G^{*}=c a .20 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for UIVUII exchange, as estimated by comparison with other reactions of $\left.U^{I I I}\right)$ lies on the straight line of Figure 2 (A. Ekstrom, A. B. McLaren, and L. E. Smythe, Inorg. Chem., 1975, 14, 2899).

